Answer:
7,250.
Step-by-step explanation:
Answer:

Step-by-step explanation:
We can write the equation of a line in 3 different forms including slope intercept, point-slope, and standard depending on the information we have. We have two standard form equations which we will get a slope and a y-intercept from. We will convert each to slope intercept form to get the information. We will then write a new slope-intercept equation and convert to standard form.
3x-5y=7 has the same slope as the line. Let's convert.


The slope is
.
2y-9x=8 has the same y-intercept as the line. Let's convert.


The y-intercept is 4.
We take
and b=4 and substitute into y=mx+b.

We now convert to standard form.

For standard form we need the coefficients of x and y to be not zero or fractions. We need integers but the coefficient of x cannot be negative. So we multiply the entire equation by -5 to clear the denominators.

Answer:
Step-by-step explanation:
A(-6,2) =>A'(-5, -1)
B(-5,4) =>B'( -4,1)
C(-2,4)=> C'(-1,1)
D( 1,2) => D'(2,-1)
we move all these points to (x+1, y-3)
3. A=bh/2
2A=bh
h=2A/b.
8. Dy-Cx=E
Dy=E+Cx
y=(E+Cx)/D
Answer: The set does not have a solution
Step-by-step explanation:
Adding Equations 1 & 3 we get 5x = 7. This gives x = 7/5
Putting this value of x in eq. 2 we get
-2y + 2z = -1-(7/5) or
2y - 2z = 12/5 or 5y - 5z = 6
Multiplying eq. 1 by 2 we get
4x + 2y - 2z = 6
adding this with eq. 2 we get 5x = 5 or x = 1
As the common solution for x from equations 1&3 does not satisfy eq. 1&2 it comes out that the three equations do not have a common solution.
Same can be verified by using different sets of two equations also.