The change in internal energy of the gas is

.
In fact, the 1st law of thermodynamics states that the change in internal energy of a system is equal to the amount of heat given to the system (Q) plus the work done on the system (W):

In this example, no work is done on the bottle so W=0, while the heat given to the system is

, so the change in internal energy of the gas is
To do that, we would need to know what is "described above".
The particle has a constant horizontal velocity, and a vertical force won't affect the horizontal speed, so it should be fairly easy to find the last part, "the time taken for a 10m horizontal displacement," using a kinematic equation.
X = x + vt + (1/2)at²
10 = 0 + (1.6)t + (1/2)(0)t²
10/1.6 = t
t = 6.25s
So now we have to find the vertical displacement over 6.25 seconds on a particle of a 2.5kg mass with a force of 8N.
Start with Newton's second law.
F = ma
8 = (2.5)a
a = 3.2m/s²
Now, use kinematics again.
Y = y + vt + (1/2)at²
Y = 0 + (0)(6.25) + (1/2)(3.2)(6.25)²
Y = <u>62.5m</u>
Answer:
a) -5.40 rad/s
b) -2.842 rad/s²
Explanation:
The direction is important in dealing with such questions. Clockwise is considered negative and counterclockwise is considered positive
a) Δω = final angular velocity - initial angular velocity
= -2.70 rad/s - 2.70 rad/s
= -5.40 rad/s
b) ∝ = Δω/Δt = (-5.40 rad/s)/1.90s = -2.842 rad/s²