Complete Question
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? COP
(b) What If? What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump? COP
Answer:
a

b
Explanation:
From the question we are told that
The lower operation temperature of refrigerator is
The upper operation temperature of the refrigerator is 
Generally the refrigerators coefficient of performance is mathematically represented as

=> 
=> 
Generally if a refrigerator (operating between the same temperatures) was instead used as a heat pump , the coefficient of performance is mathematically represented as
=>
=>
<span>You can start with the equations you know
a=v^2/r = (2pi*r/T)^2/r = 4pi^2r/T^2
Radius of earth (R) = 6378.1 km
Time in one day (T) = 86400 seconds
Latitude = 44.4 degrees
If you draw a circle and have the radius going out at a 44.4 degree angle above the center you can then find the r.
r=Rcos(44.4)
r=6378.1cos(44.4)
r= 4556.978198 km or 4556978 m
Now you can plug this value into the acceleration equation from above...
a= 1.8*10^8/7.47*10^9
a= .0241 m/s^2 </span>
Answer:
9.8 m/s2
Explanation:
In the first equation above, g is referred to as the acceleration of gravity. Its value is 9.8 m/s2 on Earth. That is to say, the acceleration of gravity on the surface of the earth at sea level is 9.8 m/s2.
Got it from the internet, hope it helps though ^^
The concept that we need to give solution to this problem is collision equation given by momentum conservation,
Our values are,

Then,
Part A) We can here note that the velocity for the puck is zero (there is not a velocity in that direction)



Part B ) We apply the same solution but know we note that in the collision for the Goalie the velocity is zero.


