1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
2 years ago
15

Waves can carry either ____ or __________ energy?

Physics
2 answers:
Aloiza [94]2 years ago
5 0

Answer:

ways can carry either __machanical___ or electromagnetic energy

Oksanka [162]2 years ago
3 0
Mechanical or Electromagnetic
You might be interested in
What does the term equilibrium refer to
igor_vitrenko [27]
Equilibrium<span>-the condition of a system when no observable change is taken place or the kinetic energy is equal. </span>Equilibrium means<span> to stay balanced or equal.</span>
6 0
3 years ago
Read 2 more answers
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
which of the following statements best explains how consumers determine growth in technological areas
Mrac [35]
If these were the missing choices:

a)      Consumers fill out questionnaires concerning their need for new products.

b)      Consumers vote for politicians who decide which kind of research to support

c)       Consumers decide what to buy and what not to buy

d)      Consumers influence the decisions of private foundations by deciding where to donate money.


My answer would be: c)       <span>Consumers decide what to buy and what not to buy</span>

Every growth is based on the demand of the people. If a good or service is needed then its demand will increase. If a good or service is not needed then its demand will decrease until such time that said good or service will be eliminated. 

6 0
3 years ago
Please help I'm stuck on this question ​
Afina-wow [57]

Answer:

increase

decrease

Explanation:

using formula

Vt=mg/6πηr

so if m increases V increases

r is the denominator so if r increases V decreases

8 0
2 years ago
5. An acrobat, starting from rest, swings freely on a trapeze of
34kurt

The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;

     a) The maximum speed is v = 4.89 m / s

     b) The maximum height is h = 1.22 m

The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.

               Em = K + U

Let's write the energy in two points.

Starting point. Highest part of the oscillation

            Em₀ = U = m g h

Final point. Lower part of the movement

            Em_f = K = ½ m v²

Energy is conserved.

            Emo = Em_f  

            m g h = ½ m v²

            v² = 2 gh

Let's use trigonometry to find the height, see attached.

         h = L - L cos θ

         h = L (1- cos θ)

They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.

         h = 3.7 (1- cos 48)

          h = 1.22 m

this  is the maximum height of the movement.

Let's calculate the velocity.  

          v= \sqrt{2 \ 9.8 \ 1.22}  

          v = 4.89 m / s

In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;

     a) The maximum speed is v = 4.89 m / s

     b) The maximum height is h = 1.22 m

Learn more here: brainly.com/question/13010190

5 0
3 years ago
Other questions:
  • Instantaneous speed is measured
    14·1 answer
  • Please help asap. I'm terrible with atoms
    13·2 answers
  • Explain why the baking instructions on a box of cake mix are different for high and low elevations. Would you expect to have a l
    14·1 answer
  • What can electricty from solar power be used for​
    14·1 answer
  • An air-conditioning system's automatic controller might directly control the A. conversion of pneumatic energy to hydraulic sign
    13·1 answer
  • Moving plates form what tyes of boundaries?
    9·1 answer
  • a car advertisement States that a certain car can accelerate from rest to70km/h in 7seconds find the car's average acceleration​
    15·1 answer
  • If a star were located exactly at each celestial pole, the corrected altitude of the star would equal __________.
    7·1 answer
  • Imagine that our Sun were magically and suddenly replaced by a black hole of the same mass (1 solar mass). How would Earth's orb
    12·1 answer
  • A remote controlled toy car starts from rest and begins to accelerate in a straight line. The figure below represents "snapshots
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!