Answer:
i dont know
Explanation:im sorry to do this to you but you dont have to watch ads if you answer questions
Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:


Answer:
Option E is correct 310N
Explanation:
Given that the force used to push the crate is F = 200N
The force directed 20° below the horizontal
Mass of crate is m = 25kg
Weight of the crate can be determine using
W = mg
g is gravitational constant =9.8m/s²
W = 25×9.8
W = 245 N
Check attachment. For free body diagram and better understanding
Using newton second law along the vertical axis since we want to find the normal force
ΣFy = m•ay
ay = 0, since the body is not moving in the vertical or y direction
N—W—F•Sin20 = 0
N = W+F•Sin20
N = 245+ 200Sin20
N = 245 + 68.4
N = 313.4 N
The normal force is approximately 310 N to the nearest ten
The answer to the question '<span>In a series of undisturbed rock layers where shale lies between sandstone below and limestone above, the __." would be limestone is youngest. Out of all the rock layers, the limestone is dated to be the youngest of all.</span>