At the highest point: kinetic energy is 0 due to the speed is 0
So the total mechanical energy is 20
Assume no frictions present, then the mechanical energy is conserved
So at the lowest point, kinetic energy = mechanical energy - potential energy
Answer will be 20 - 0.5 = 19.5 J
Answer:
The energy entering, reflecting, absorbed, and emitted by the earth system are the components of the Earth's radiation budget.
Explanation:
I hope this helps also I hope you have a great day and a new year.
Answer:
A : hot and moist, maritime tropical
B: cold and dry, maritime polar
C: hot and moist , maritime tropical
D: cold and dry, continental polar
E: hot and moist , maritime tropical
F: cold and dry , maritime polar
Explanation:
Cold air is denser than warm air. The more water vapor that is in the air, the less dense the air becomes. That is why cold, dry air is much heavier than warm, humid air.
Maritime polar (mP) air masses are cool, moist, and unstable. Some maritime polar air masses originate as continental polar air masses over Asia and move westward over the Pacific, collecting warmth and moisture from the ocean.
Maritime tropical (mT) air masses are warm, moist, and usually unstable.
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!