If the boat is floating, then it's just sitting there, and not accelerating
up or down. That means the vertical forces on it must be balanced.
So if its weight (acting downward) is 100 newtons, then the buoyant
force on it (acting upward) must also be 100 newtons.
Answer:
The efficiency is 0.33, or 33%.
Explanation:
From the thermodynamics equations, we know that the formula for the efficiency of a heat engine is:

Where η is the efficiency of the engine, Q_1 is the heat energy taken from the hot source and Q_2 is the heat energy given to the cold object. So, plugging the given values in the formula, we obtain:

This means that the efficiency of the heat engine is 0.33, or 33% (The efficiency of an engine is dimensionless).
True it was a perfect running technique
Answer:
The acceleration of the ball is constant and equal to -9.81 m/s² (acting downwards)
The velocity of the ball reduces at a constant rate with time on its way up
Explanation:
The motion of the ball upwards is described by the following equation;
v = u - g × t
v² = u² - 2 × g × s
Where;
v = The final velocity of the ball
u = The initial velocity of the ball
g = The acceleration due to gravity = Constant
s = The height of the bass after a given time, t
t = The time in which the ball is rising
Therefore, the acceleration of the ball = The acceleration due to gravity (Constant) = -9.81 m/s²↓
From v = u - g × t = u - 9.81 × t , the velocity of the ball reduces at a constant rate with time on its way up.
Her average speed was 55MPH. Hope this helps!