Answer:
ms⁻¹
Explanation:
Consider the motion of the bullet-block combination after collision
= mass of the bullet = 0.0382 kg
= mass of wooden block = 3.78 kg
= velocity of the bullet-block combination after collision
= spring constant of the spring = 833 N m⁻¹
= Amplitude of oscillation = 0.190 m
Using conservation of energy
Kinetic energy of bullet-block combination after collision = Spring potential energy gained due to compression of spring


ms⁻¹
= initial velocity of the bullet before striking the block
Using conservation of momentum for the collision between bullet and block


ms⁻¹
Lighter molecules move fast and escape from the upper atmosphere relatively quickly.
To find the answer, we have to know more about the lighter isotopes.
<h3>
What are lighter isotopes?</h3>
- Lighter molecules are mobile and soon leave the higher atmosphere.
- A particular element's stable isotopes have slightly different atomic masses and quantum mechanical energies.
- The lighter isotope of an element's chemical bonds are more easily broken than the heavier isotope's.
- As a result, the light isotope typically benefits from chemical reactions.
Thus, we can conclude that, lighter molecules move fast and escape from the upper atmosphere relatively quickly.
Learn more about the isotopes here:
brainly.com/question/364529
#SPJ4
Answer:
1800J
Explanation:
Given parameters:
Weight of the book = 20N
Total distance covered = 45m + 15m + 30m = 90m
Unknown:
Total work performed on the books = ?
Solution:
To solve this problem we must understand that work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Work done = 20 x 90 = 1800J
Answer:
from the position of the center of the Sun
Explanation:
As we know that mass of Sun and Jupiter is given as


distance between Sun and Jupiter is given as

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them
so we will have


from the position of the center of the Sun
Answer:
The new force between the charges becomes double of the initial force.
Explanation:
The force acting between charge particles is given by :

k is electrostatic constant
r is distance between charges
If one of the charges are doubled, then, q₁ = 2q₁
The new force becomes,

So, the new force between the charges becomes double of the initial force.