The salt is a solid compound and is considered the "Solute" of the solution.
C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though?
<span>This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! </span>
<span>Try </span><span>C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:
PbMg
Explanation:
Because they both have a charge of 2+, they can be reduced and cancel each other out because 2 and 2 can be reduced to 1
Answer:
<h2>Lead(II) oxide</h2>
Explanation:
<h3>Lead(II) oxide, also called lead monoxide, is the inorganic compound with the molecular formula PbO. PbO occurs in two polymorphs: litharge having a tetragonal crystal structure, and massicot having an orthorhombic crystal structure. Modern applications for PbO are mostly in lead-based industrial glass and industrial ceramics, including computer components. It is an amphoteric oxide.[3]</h3>
- Other names
- Lead monoxide
- Litharge
- Massicot
- Plumbous oxide
- Galena
<h2> Preparation</h2><h3>PbO may be prepared by heating lead metal in air at approximately 600 °C (1,100 °F). At this temperature it is also the end product of oxidation of other oxides of lead in air:[4]</h3><h3>Thermal decomposition of lead(II) nitrate or lead(II) carbonate also results in the formation of PbO:</h3>
<h3>2 Pb(NO</h3><h3>3)</h3><h3>2 → 2 PbO + 4 NO</h3><h3>2 + O</h3><h3>2</h3><h3>PbCO</h3><h3>3 → PbO + CO2</h3><h3>PbO is produced on a large scale as an intermediate product in refining raw lead ores into metallic lead. The usual lead ore is galena (lead(II) sulfide). At a temperature of around 1,000 °C (1,800 °F) the sulfide is converted to the oxide:[5]</h3>
<h3>2 PbS + 3 O</h3><h3>2 → 2 PbO + 2 SO2</h3><h3>Metallic lead is obtained by reducing PbO with carbon monoxide at around 1,200 °C (2,200 °F):[6]</h3>
<h3>PbO + CO → Pb + CO2</h3>
pls brainlest meh
Answer:
The answer to your question is 21.45 g of KBr
Explanation:
Chemical reaction
2K + Br₂ ⇒ 2KBr
14.4 ?
Process
1.- Calculate the molecular mass of bromine and potassium bromide
Bromine = 2 x 79.9 = 159.8g
Potassium bromide = 2(79.9 + 39.1) = 238 g
2.- Solve it using proportions
159.8 g of Bromine ------------ 238 g of potassium bromide
14.4 g of Bromine ------------ x
x = (14.4 x 238) / 159.8
x = 3427.2 / 159.8
x = 21.45g of KBr