Answer: The time required for the impluse passing through each other is approximately 0.18seconds
Explanation:
Given:
Length,L = 50m
M/L = 0.020kg/m
FA = 5.7×10^2N
FB = 2.5×10^2N
The sum of distance travelled by each pulse must be 50m since each pulse started from opposite ends.
Ca(t) + CB(t) = 50
Where CA and CB are the velocities of the wire A and B
t = 50/ (CA + CB)
But C = Sqrt(FL/M)
Substituting gives:
t = 50/ (Sqrt( FAL/M) + Sqrt(FBL/M))
t = 50/(Sqrt 5.7×10^2/0.02) + (Sqrt(2.5×10^2/0.02))
t = 50 / (168.62 + 111.83)
t = 50/280.15
t = 0.18 seconds
Yes minerals are flammable. I almost caught my shirt on fire onetime
The initial speed of the bolt is not 58.86 m/s.
Let a be the acceleration of the rocket.
During the 4 sec lift off, the rocket has reached a height of
h = (1/2)*a*t^2
with t=4,
h = (1/2)*a^16
h = 8*a
Its velocity at 4 sec is
v = t*a
v = 4*a
The initial velocity of the bolt is thus 4*a.
During the 6 sec fall, the bolt has the initial velocity V0=-4*a and it drops a total height of h=8*a. From the equation of motion,
h = (1/2)*g*t^2 + V0*t
Substituting h0=8*a, t=6 and V0=-4*a into it,
8*a = (1/2)*g*36 - 4*a*6
Solving for a
a = 5.52 m/s^2
<u>Answer</u>
0.00346 hL
<u>Explanation</u>
cL means Centilitre while hL means Hectolitre.
10,000 cL = 1 hL
∴ 34.6 cL = 34.6/10,000 hL
= <em>0.00346 hL</em>
You can see the Stud Multipliers right away in your Holoprojector menu under the Extras tab.