Answer:
True
Explanation:
Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects. Example: Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop.
A tissue donor is what you're probably looking for. :)
Answer:
<em>When a moving car brakes to a stop the </em><em>kinetic energy of the car is converted to heat energy.
</em>
Explanation:
A moving car has kinetic energy.
It is given by the equation 
Where m denotes mass of the car and v denote sits velocity. When the brakes are applied the velocity becomes zero and the car doesn’t possess kinetic energy anymore.
According to law of conservation of energy can neither be created nor be destroyed but can only be transformed from one form to another. On coming to a stop, the kinetic energy of the car gets converted to heat. The friction between the tyre and the road heats up the tyre.
Answer:
1.6675×10^-16N
Explanation:
The force of gravity that the space shuttle experiences is expressed as;
g = GM/r²
G is the gravitational constant
M is the mass = 1.0 x 10^5 kg
r is the altitude = 200km = 200,000m
Substitute into the formula
g = 6.67×10^-11 × 1.0×10^5/(2×10^5)²
g = 6.67×10^-6/4×10^10
g = 1.6675×10^{-6-10}
g = 1.6675×10^-16N
Hence the force of gravity experienced by the shuttle is 1.6675×10^-16N
Here's what you need to know about waves:
Wavelength = (speed) / (frequency)
Now ... The question gives you the speed and the frequency,
but they're stated in unusual ways, with complicated numbers.
Frequency: How many each second ?
The thing that's making the waves is vibrating 47 times in 26.9 seconds.
Frequency = (47) / (46.9 s) = 1.747... per second. (1.747... Hz)
Speed: How far a point on a wave travels in 1 second.
The crest of one wave travels 4.16 meters in 13.7 seconds.
Speed = (4.16 m / 13.7 sec) = 0.304... m/s
Wavelength = (speed) / (frequency)
Wavelength = (0.304 m/s) / (1.747 Hz) = 0.174 meter per second