Given:
The line passing through (-2,5) and (2,p) has a gradient of
.
To find:
The value of p.
Solution:
If a line passes through two points, then the slope of the line is:

The line passing through (-2,5) and (2,p). So, the slope of the line is:



It is given that the gradient or slope of the line is
.

On cross multiplication, we get




Divide both sides by 2.

Therefore, the value of p is 3.
THE FIRST ONE AND THE LAST ONE
Answer:
the answer is 
Step-by-step explanation:
Try using Symbolab, I use it all the time it gives the correct answer and it gives good explanations.
Given:
p = 90% = 0.9, the probability that an adult has had chickenpox by age 50.
Therefore,
q = 1 - p = 0.1, the probability that an adult has not had chickenpox by age 50.
Part (a)
Because there are only two answers: "Yes" or "No" to whether an adult has had chickenpox by age 50, the use of the binomial distribution is justified.
Part (b):
Calculate the probability that exactly 97 out of 100 sampled adults have had chickenpox.
The probability is
P₁ = ₁₀₀C₉₇ (0.9)⁹⁷ (0.1)³ = 0.0059
Answer: 0.006 or 0.6%
Part (c)
Calculate the probability that exactly 3 adults have not had chickenpox.
Theis probability is equal to
P₂ = 1 - P₁ = 1 - 0.006 = 0.994
Answer: 0.994 or 99.4%
Part (d)
Calculate the probability that at least 1 out of 10 randomly selected adults have had chickenpox.
The probability is
P₃ = ₁₀C₀ (0.9)⁰ (0.1)¹⁰ + ₁₀C₁ (0.9)¹ (0.1)⁹ = 10⁻¹⁰ + 10⁻⁹ = 10⁻⁹ ≈ 0
Answer: 0
Part (e)
Calculate the probability that at most 3 out of 10 randomly selected adults have not had chickenpox.
The probability is
P₄ = 1 - [₁₀C₀ (0.9)⁰(0.1)¹⁰ + ₁₀C₁ (0.9)¹(0.1)⁹ + ₁₀C₂ (0.9)²(0.1)⁸ + ₁₀C₃ (0.9)³(0.1)⁷]
= 1 - (10⁻¹⁰ + 9 x 10⁻⁹ + 3.645 x 10⁻⁷ + 8.748 x 10⁻⁶)
= 1
Answer: 1.0 or 100%