Answer:
Because the specific heat of the metal is less than the specific heat of water.
Explanation:
Hello, happy to help you today!
In this case, we need to analyze a property called "specific heat" which accounts for how much energy is required to increase or decrease the temperature of 1 g of the substance by 1 °C.
In this case, since the specific heat of water is about 4.184 J/g°C and the specific heat of metals in general is greater than zero, of course, but less than one, we can infer that for the same amount of energy, when they are in contact, more grams of metal will be cooled down to those of water heated up, because the specific heat of the metal is less than the specific heat of water.
Best regards!.
Answer:
Used as rocket fuel, is a fertilizer ingredient, used in cooking, used to provide lighting, and used in production of other compounds
Explanation:
Hope this helps!!!
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
The answer is D; Mass and Velocity
Answer: It will take 11.775 seconds.
Explanation: As a sphere with a diameter of 0.1 mm, the area of an alveolus is
A = 4.π.r²
r for an alveolus would be: r = 0.00005m or r = 5.
m
Finding the area:
A = 4.3.14.(5.
)²
A = 3.14.
m²
The concentration change is to be 90% of the final, so
c = 0.9.3.14.
c = 28.26.
The oxygen diffusivity is 2.4.
m²/s, that means in 1 second 2.4.
of oxygen spread in one alveolus area. So:
1 second = 2.4.
m²
t seconds = 28.26.
m²
t = 
t = 11.775s
For a concentration change at the center to be 90%, it will take 11.775s.