iii. True. The existence of a vacancy in a crystal decreases the energy of the material.
One of the scientific disciplines called crystallography examines how the atoms in a solid crystal are arranged. When molecules are linked together in a regular way, these crystals are created.
The mechanical, physical, and optical properties of a material can alter when crystal flaws are present. The strength of the material can be impacted by a flaw.
An irregularity in the atoms' regular geometrical arrangement within a crystalline material is referred to as a crystal defect. These flaws are caused by the solid being deformed, cooling quickly from a high temperature, or being exposed to high-energy radiation (such as X-rays or neutrons). because the vacancy cause defects and the crystal structure is disturbed this causes a decrease in energy.
To know more about vacancy visit the link:
brainly.com/question/14937309?referrer=searchResults
#SPJ4
Answer:
long range order
Explanation:
A crystal consists of atoms, ions or molecules having both short range and long range order. The atoms, ions or molecules are arranged in a regular pattern throughout the lattice both at immediate vicinities and across the entire crystal structure.
This order accounts for the definite shape and unique properties of crystals which include their sharp melting and boiling points which distinguishes them from amorphous substances.
Answer:
In the criss-cross method, the numerical value of the ion charge of the two atoms are crossed over, which becomes the subscript of the other ion. Using this technique, we will write the chemical formula of the given compounds.
Criss cross the absolute values to give Al2O3. To find the formula for magnesium oxide:- The oxidation number of Mg is +2 and oxygen is -2. Criss cross the absolute values to give Mg2O2In this example there is a common factor of 2 so divide by 2 to give MgO.
Transparency (also called pellucidity or diaphaneity) in the field of optics is the physical property of allowing light to pass through the material without significant light dispersion.