Answer:
Molality, Solvent, Solute, Mole fraction, Molarity.
Explanation:
The expression of concentration that provides the moles of solute per kilograms of solvent is Molality. This in the only expression referred to the solvent.
A solution is made up of 0.15 grams of sodium chloride in 1 liter of water. For this solution, the Solvent is water. When water is present, it is usually considered the solvent.
A solution is made up of 0.15 grams of sodium chloride in 1 liter of water. For this solution, the Solute is sodium chloride. There can be 1 or more solutes in a solution.
If you place 5 moles of sodium chloride and 4 moles of sucrose into 11 moles of water, the Mole fraction of sodium chloride would be 0.25. The mole fraction is equal to the moles of a substance divided by the total number of moles.
A way to express concentration that provides the moles of solute per liter of solution is Molarity.
Answer:
number 1 is b and and number two d
Explanation:
Answer:
productivity and water depth
Explanation:
The productivity and the depth of water are both equally important as it directly affects the accumulation of biogenic sediments such as the siliceous ooze and calcareous ooze. In the equator and the coastal upwelling areas, and at the site of divergence of oceans, there occurs a high rate and amount of productivity, and these are considered to be the primary productivity.
The siliceous oozes are a good indicator of extensively high productivity in comparison to the carbonate oozes. The main reason behind this is that the silica can be easily dissolved in the surface water. On the other hand, the carbonates dissolve at a relatively lower ocean water depth, so there requires a high amount of surface productivity in order to allow these siliceous oozes to reach the ocean bottom.
Thus, the water depth and productivity, both are considered as the limiting factor in determining the accumulation of biogenic oozes.
A. physical change took place during the experiment. (plato users)