Answer:
212.304 grams
Explanation:
similar to your other question, use the same formula
q=mCpΔT
23617=m(4.182)(46.6-20)
23617=111.2412m
m=212.304g
Answer : Option (A) Accelerator 2 model has the lowest percentage of energy lost as waste.
Solution : Given,
For Accelerator 1 model,
Input energy = 2078.3 J
Wasted energy = 663.1 J
Output energy = 1415.2 J
For Accelerator 2 model,
Input energy = 7690.0 J
Wasted energy = 2337.5 J
Output energy = 5353.5 J
For Accelerator 3 model,
Input energy = 4061.9 J
Wasted energy = 2259.6 J
Output energy = 1802.3 J
Formula used for lowest percentage of energy lost as waste is:
% energy lost as waste = (Total energy wasted / Total input energy ) × 100
For Accelerator 1 model,
% energy lost as waste =
= 31.90%
For Accelerator 2 model,
% energy lost as waste =
= 30.39%
For Accelerator 3 model,
% energy lost as waste =
= 55.62%
So, we conclude that the Accelerator 2 model has the lowest percentage of energy lost as waste.
Answer:
The correct answer to this problem is B. 7.0 X 10^-8 meters
Explanation:
To solve this problem, we have to use the following equation:
c = λν, or speed of light = wavelength*frequency
If we substitute in the values we are given by the problem, we get:
3.00 * 10^8 m/s = (4.3 * 10^15 Hz)*(wavelength)
wavelength = 6.98 * 10^-8 m
Since the given value has 2 significant figures, our answer should similarly include two significant figures since the operation in the problem was multiplication.
Therefore, the answer is B. 7.0 X 10^-8 meters.
Hope this helps!
The substances have different atomic masses, one is organic and one is inorganic, and Cl and Oxygen belong to different groups. There are more differences but these are the most basic ones.
Answer:
iIllustrated Glossary of Organic Chemistry - Atomic radius. Atomic radius: The radius of an atom. This distance between an atom's nucleus and outer electron shell. ... Atomic radius differs with the bonding state of an atom (for example an nonbonded atom of an element versus the same element within a covalent bond).