We can set it up like this, where <em>s </em>is the speed of the canoeist:

To make a common denominator between the fractions, we can multiply the whole equation by s(s-5):
![s(s-5)[\frac{18}{s} + \frac{4}{s-5} = 3] \\ 18(s-5)+4s=3s(s-5) \\ 18s - 90+4s=3 s^{2} -15s](https://tex.z-dn.net/?f=s%28s-5%29%5B%5Cfrac%7B18%7D%7Bs%7D%20%2B%20%5Cfrac%7B4%7D%7Bs-5%7D%20%3D%203%5D%20%5C%5C%2018%28s-5%29%2B4s%3D3s%28s-5%29%20%5C%5C%2018s%20-%2090%2B4s%3D3%20s%5E%7B2%7D%20-15s)
If we rearrange this, we can turn it into a quadratic equation and factor:

Technically, either of these solutions would work when plugged into the original equation, but I would use the second solution because it's a little "neater." We have the speed for the first part of the trip (9 mph); now we just need to subtract 5mph to get the speed for the second part of the trip.

The canoeist's speed on the first part of the trip was 9mph, and their speed on the second part was 4mph.
Answer:corresponding angles
I am very sure
Step-by-step explanation:
40 * 7.85 = 314
32.24 + 24.02 + 24.53 = 80.79
314 - 80.79 = 233.21
Answer is D
Answer: sin u = -5/13 and cos v = -15/17
Step-by-step explanation:
The nice thing about trig, a little information goes a long way. That’s because there is a lot of geometry and structure in the subject. If I have sin u = opp/hyp, then I know opp is the opposite side from u, and the hypotenuse is hyp, and the adjacent side must fit the Pythagorean equation opp^2 + adj^2 = hyp^2.
So for u: (-5)^2 + adj^2 = 13^2, so with what you gave us (Quad 3),
==> adj of u = -12 therefore cos u = -12/13
Same argument for v: adj = -15,
opp^2 + (-15)^2 = 17^2 ==> opp = -8 therefore sin v = -8/17
The cosine rule for cos (u + v) = (cos u)(cos v) - (sin u)(sin v) and now we substitute: cos (u + v) = (-12/13)(-15/17) - (-5/13)(-8/17)
I am too lazy to do the remaining arithmetic, but I think we have created a way to approach all of the similar problems.