Answer:
i. pretty sure its 17.03052
Answer:
11.4
Explanation:
Step 1: Given data
- Concentration of the base (Cb): 0.300 M
- Basic dissociation constant (Kb): 1.8 × 10⁻⁵
Step 2: Write the dissociation equation
NH₃(aq) + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq)
Step 3: Calculate the concentration of OH⁻
We will use the following expression.
![[OH^{-} ]=\sqrt{Kb \times Cb } = \sqrt{1.8 \times 10^{-5} \times 0.300 } = 2.3 \times 10^{-3} M](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%20%5D%3D%5Csqrt%7BKb%20%5Ctimes%20Cb%20%7D%20%3D%20%5Csqrt%7B1.8%20%20%5Ctimes%2010%5E%7B-5%7D%20%5Ctimes%200.300%20%7D%20%3D%202.3%20%5Ctimes%2010%5E%7B-3%7D%20M)
Step 4: Calculate the pOH
We will use the following expression.
![pOH =-log[OH^{-} ]= -log(2.3 \times 10^{-3} M) = 2.6](https://tex.z-dn.net/?f=pOH%20%3D-log%5BOH%5E%7B-%7D%20%5D%3D%20-log%282.3%20%5Ctimes%2010%5E%7B-3%7D%20M%29%20%3D%202.6)
Step 5: Calculate the pH
We will use the following expression.

Answer is: 0 (zero).
ΔHf is the standard enthalpy or heat of formation of the compound. Standard enthalpy is the change of enthalpy during the formation of one mole of the substance from elements. All elements in their standard states <span>have a standard enthalpy of formation of zero,so there is no change involved in their formation.</span>
Answer:
quantum mechanical theory; it says that quantized energy makes the location of electrons uncertain
Explanation:
According to the wave particle duality theory, particles have wavelike properties and vice-versa.
We can not measure both the velocity and position of a particle simultaneously.
The quantum mechanical model now introduces the idea that the electron is not localized at a particular position within the atom. Hence, the exact location of the electron within the atom is uncertain. This is quite in line with the Heisenberg uncertainty principle