Answer:
-179.06 kJ
Explanation:
Let's consider the following balanced reaction.
HCl(g) + NaOH(s) ⟶ NaCl(s) + H₂O(l)
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
ΔH°r = 1 mol × ΔH°f(NaCl(s)) + 1 mol × ΔH°f(H₂O(l)) - 1 mol × ΔH°f(HCl(g)) - 1 mol × ΔH°f(NaOH(s))
ΔH°r = 1 mol × (-411.15 kJ/mol) + 1 mol × (-285.83 kJ/mol) - 1 mol × (-92.31 kJ/mol) - 1 mol × (-425.61 kJ/mol)
ΔH°r = -179.06 kJ
Answer:
The molecules in the water become more separated due to heat.
Answer: Selection proper
Explanation:
it's an anti-chance process, but subject to many constraints
Fusion occurs constantly on our sun, which produces most of its energy via the nuclear fusion of hydrogen into helium. Neither do fusion reactions produce the large amounts of dangerous radioactive waste that fission reactions do. That's why it's such a dreamy source of energy.
We are given that 1 teaspoon is equivalent to 5 mL,
therefore 0.75 teaspoon is:
0.75 teaspoon * (5 mL / 1 teaspoon) = 3.75 mL
So the mass is density times volume:
mass = (12.5 mg/5 ml) * 3.75 mL
<span>mass = 9.375 mg</span>