Answer:

Explanation:
Hello there!
In this case, given the solubilization of cadmium (II) hydroxide:

The solubility product can be set up as follows:
![Ksp=[Cd^{2+}][OH^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BCd%5E%7B2%2B%7D%5D%5BOH%5E-%5D%5E2)
Now, since we know the concentration of cadmium (II) ions at equilibrium and the mole ratio of these ions to the hydroxide ions is 1:2, we infer that the concentration of the latter at equilibrium is 3.5x10⁻⁵ M. In such a way, the resulting Ksp turns out to be:

Regards!
Answer:
v = 46.5 m/s
Explanation:
Given data:
Mass of car = 1210 kg
Momentum of car = 56250 kg m/s
Velocity of car = ?
Solution:
Formula:
p = mv
p = momentum
m = mass
v = velocity
Now we will put values in formula:
56250 kg m/s = 1210 kg × v
v = 56250 kg m/s / 1210 kg
v = 46.5 m/s
So a car having mass of 1210 kg with momentum 56250 kg m/s having 46.5 m/s velocity.
Answer:
Explanation:
19) it is 3d10 instead of 4d10
20) it is missing 3p6, and 4s2 before 3d5
21) Ra is not a noble gas
22) Cs is not a noble gas
Answer: Gas. Gas vibrates and move freely at high speeds.
Explanation:
Yes. Heating up the solvent gives the molecules more kinetic energy. The more rapid motion means that the solvent molecules collide with the solute with greater frequency and the collisions occur with more force. Both factors increase the rate at which the solute dissolves.