1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
3 years ago
14

1. c+z when c = 3 and z = 17

Mathematics
1 answer:
ivann1987 [24]3 years ago
8 0
1) 3+17= 20
2) 40-15= 25
3) 3 x 20= 60
4) 35/5= 7
5) 2 x 6= 1
12= 1
1/12.
You might be interested in
The number of bikes sold each year, in thousands, in a city since 2004 is shown by the graph below, where x represents the numbe
fgiga [73]

Answer: Your answer will be A

Hope this helps


Step-by-step explanation:


4 0
3 years ago
Gerald answered 28 math questions in 32 minutes. Tomas answered 27 questions in 30 minutes.Daniel answered 35 questions in 40 mi
gregori [183]
Daniel did. Happy Halloween can u mark me as brainliest and thanks. I neeed to rank up
4 0
3 years ago
Read 2 more answers
Consider the following initial value problem, in which an input of large amplitude and short duration has been idealized as a de
Ganezh [65]

Answer:

a. \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

b. \mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

Step-by-step explanation:

The initial value problem is given as:

y' +y = 7+\delta (t-3) \\ \\ y(0)=0

Applying  laplace transformation on the expression y' +y = 7+\delta (t-3)

to get  L[{y+y'} ]= L[{7 + \delta (t-3)}]

l\{y' \} + L \{y\} = L \{7\} + L \{ \delta (t-3\} \\ \\ sY(s) -y(0) +Y(s) = \dfrac{7}{s}+ e ^{-3s} \\ \\ (s+1) Y(s) -0 = \dfrac{7}{s}+ e^{-3s} \\ \\ \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

Taking inverse of Laplace transformation

y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{1}{s+1}] = e^{-t}  = f(t) \ then \ by \ second \ shifting \ theorem;

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

= e^{-t-3} \left \{ {{1 \ \ \ \ \  t>3} \atop {0 \ \ \ \ \  t

= e^{-(t-3)} u (t-3)

Recall that:

y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

Then

y(t) = 7 -7e^{-t}  +e^{-(t-3)} u (t-3)

y(t) = 7 -7e^{-t}  +e^{-t} e^{-3} u (t-3)

\mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

3 0
3 years ago
6x2 - 5x - 4 is equivalent to:
Sophie [7]

Answer:

<em>(</em><em>2</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>)</em><em> </em><em> </em><em>(</em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>4</em><em>)</em>

Step-by-step explanation:

Solution:

  • 6x² - 5x - 4
  • 6x²- (8 - 3)x - 4
  • 6x²- 8x + 3x - 4
  • 2x (3x - 4) +1 (3x - 4)
  • (2x + 1) (3x - 4)
4 0
2 years ago
Would the mean or median best describe the following data?
abruzzese [7]
36 is the median and add them all then divide by 5 to get the mean 

8 0
3 years ago
Read 2 more answers
Other questions:
  • The area of a rectangle is 60 cm2 If the width of the
    14·1 answer
  • plumbing service charges $35 per hour plus a $25 travel charge for a service call. Good guys plumbing repair charges $40 per hou
    14·1 answer
  • Is 0.7105386266520861 a rational or irrational number?
    6·2 answers
  • Given the function f(x) = 2x, find the value of f−1(16).
    7·2 answers
  • A rectangular field is 125 meters long and 75 meters wide. Give the length and width of another rectangular field that has the s
    5·1 answer
  • Which algebraic expression is equivalent to the expression below?
    8·2 answers
  • What are the next three terms of the arithmetic sequence -18, -13, -8, -3,…?
    5·1 answer
  • Find domain and range -√x-5+10
    7·1 answer
  • Someone please help me
    7·2 answers
  • On March 23, 1989, the chemists Stanley Pons of the University of Utah and
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!