Answer:

Step-by-step explanation:
Given: A point which is perpendicular to the line .
To find: The equation of the line which passes through
and is perpendicular to the line
.
Solution:
We have,
.
Slope of the line
is
.
The line which passes through
is perpendicular to the line
.
Now, the product of the slopes of two perpendicular lines is
.
Therefore, 
So, its slope is
.
Now, the equation of the line which passes through
and slope
is:
![y-(-4)=\frac{5}{4} [x-(-4)]](https://tex.z-dn.net/?f=y-%28-4%29%3D%5Cfrac%7B5%7D%7B4%7D%20%5Bx-%28-4%29%5D)





Hence, the equation of the line that contains the point
and is perpendicular to the line
is
.