Answer:
245.45km in a direction 21.45° west of north from city A
Explanation:
Let's place the origin of a coordinate system at city A.
The final position of the airplane is given by:
rf = ra + rb + rc where ra, rb and rc are the vectors of the relative displacements the airplane has made. If we separate this equation into its x and y coordinates:
rfX = raX+ rbX + rcX = 175*cos(30)-150*sin(20)-190 = -89.75km
rfY = raY + rbY + rcT = 175*sin(30)+150*cos(20) = 228.45km
The module of this position is:

And the angle measure from the y-axis is:

So the answer is 245.45km in a direction 21.45° west of north from city A
Answer:

Explanation:
information we know:
Total force: 
Weight: 
distance: 
vertical component of the force: 
-------------
In this case we need the formulas to calculate the components of the force (because to calculate the work we need the horizontal component of the force).
horizontal component: 
vertical component: 
but from the given information we know that 
so, equation these two
and 

and we know the force
, thus:

now we clear for 

the angle to the horizontal is 15.466°, with this information we can calculate the horizontal component of the force:


whith this horizontal component we calculate the work to move the crate a distance of 4 m:

the work done is W=173.48J
Answer:
2649600 Joules
Explanation:
Efficiency = 40%
m = Mass of air = 92000 kg
v = Velocity of wind = 12 m/s
Kinetic energy is given by

The kinetic energy of the wind is 6624000 Joules
The wind turbine extracts 40% of the kinetic energy of the wind

The energy extracted by the turbine every second is 2649600 Joules