Step-by-step explanation:
the answer is 35 if he want the degree of c in RCD trangle
and if you want the RCD and The PCD deegrees total its 70
The values are a = 7, b = -9, c = -18.
<u>Step-by-step explanation:</u>
The given quadratic equation is 
The general form of the quadratic equation is 
where,
- a is the coefficient of x².
- b is the coefficient of x.
- c is the constant term.
Now, you have to modify the given quadratic equation similar to the general form of quadratic equation.
So, bring the constant term 18 to the left side of the equation for equating it to zero.
⇒ 
Compare the above equation with general form 
⇒ a = 7
⇒ b = -9
⇒ c = -18
Therefore, the values of a, b, and c are 7, -9 and -18.
Given a polynomial
and a point
, we have that

We know that our cubic function is zero at -4, 0 and 5, which means that our polynomial is a multiple of

Since this is already a cubic polynomial (it's the product of 3 polynomials with degree one), we can only adjust a multiplicative factor: our function must be

To fix the correct value for a, we impose
:

And so we must impose

So, the function we're looking for is
