Answer:
Explanation:
is the magnetic quantum number.
The only possible value for the magnetic quantum number for an electron in an s orbital is 0.
The first three quantun numbers are:
- n: principal quantum number. It may have positive integer values: 1, 2, 3, 4,5, 6, 7, ...
: Azimuthal or angular momentum quantum number. It may have integer values from 0 to n - 1.
This quantum number is related to the type (or shape) of the orbital:
For s orbitals
For p orbitals
For d orbitals
For f orbitals
In this case, it is an s orbital, so we have
.
, the third quantum number can have integer values
to 
Since, for the s orbitals
, the only possible value for
is zero.
Answer:
2.61 J
Explanation:
Since potential energy U = mgy where m = mass of object, g = acceleration due to gravity = 9.8 m/s² and y = height of object above the ground.
Now for the coffee mug, m= 0.422 kg and it is 0.63 m on a table, so it is 0.63 m above the ground. Thus, y = 0.63 m.
We compute U
U = mgy
= 0.422 kg × 9.8 m/s² × 0.63 m
= 2.605 J
≅ 2.61 J
So, the potential energy of the mug with respect to the floor is 2.61 J
We know that whoever she is is traveling to Antarctica or elsewhere
in the south polar region. June is the beginning of Winter there, with
zero to extremely short daylight.
But we still don't know her name.
A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t = 4. f(t) = 12t² + 35 t + 1
Answer:
Velocity = 131 m/s
Speed = 131 m/s
Explanation:
Equation of motion, s = f(t) = 12t² + 35 t + 1
To get velocity of the particle, let us find the first derivative of s
v (t) = ds/dt = 24t + 35
At t = 4
v(4) = 24(4) + 35
v(4) = 131 m/s
Speed is the magnitude of velocity. Since the velocity is already positive, speed is also 131 m/s
Explanation:
Average acceleration is change in velocity over time.
a = Δv / Δt
a = (22.0 m/s − (-25.0 m/s)) / 0.00350 s
a = 13,400 m/s²