The frictional force between the tires and the road prevent the car from skidding off the road due to centripetal force.
If the frictional force is less than the centripetal force, the car will skid when it navigates a circular path.
The diagram below shows that when the car travels at tangential velocity, v, on a circular path with radius, r, the centripetal acceleration of v²/ r acts toward the center of the circle.
The resultant centripetal force is (mv²)/r, which should be balanced by the frictional force of μmg, where μ = coefficient of kinetic friction., and mg is the normal reaction on a car with mass, m.
This principle is applied on racing tracks, where the road is inclined away from the circle to give the car an extra restoring force to overcome the centripetal force.
Answer:
0 and above
Step-by-step explanation:
it can go onto infinity put 0 or Amy positive number and you got it
Answer:
21.9
Step-by-step explanation:
The altitude of an isosceles triangle bisects the base. So, x represents the hypotenuse of a right triangle with legs of 9 and 20. It can be found using the Pythagorean theorem:
x^2 = 9^2 +20^2 = 81 +400
x = √481 ≈ 21.932
The length x is about 21.9 units.
Answer:
x > 7
(I think this is Right but not sure yet )
9514 1404 393
Answer:
72
Step-by-step explanation:
The triangles are said to be similar. (ΔNPQ ~ ΔRSQ) That means corresponding sides have the same ratio:
NP/RS = NQ/RQ = PQ/SQ = 24/32 = 21/28 = 3/4
This ratio, or scale factor, also applies to the perimeters of the two triangles.
perimeter NPQ / perimeter RSQ = 3/4
Using the given expressions for the perimeters, we have ...
(7x +2)/(10x -4) = 3/4
We can solve this equation in the usual way to find the value of x. Then we can use that value to find the perimeter of ΔNPQ.
4(7x +2) = 3(10x -4) . . . . . multiply both sides by 4(10x -4)
28x +8 = 30x -12 . . . . . eliminate parentheses
20 = 2x . . . . . . . . . . . add 12-28x to both sides
10 = x . . . . . . . . . . . divide both sides by 10
The perimeter of ΔNPQ is ...
7x +2 = 7(10) +2 = 72
The perimeter of triangle NPQ is 72 units.