Molar mass of N2 = 28
Moles of N2 = 25 / 28 = 0.89
So, moles of NH3 produce = 2 x 0.89 = 1.78
Note: H2 is in excess. so no need to care about it.
The right answer is 2.
The number of protons contained in a nucleus (called an atomic number) is characteristic of a chemical element. For a given atomic number, the number of neutrons defines different "types" of this element: isotopes. The variation of the number of protons of the nucleus of an atom, during a nuclear reaction for example, causes a change of the element studied.
The number of atoms in one mole of any substance is measured by Avogadro's number. The value of Avogadro's number is 6.023 x 10 ^23. It is named after scientist Avogadro who proposed this number. 12 grams of carbon-12 represents 1 mole of carbon-12. For this reason, the number of atoms present in 1 mole of any substance is 6.023 x 10 ^23. Therefore, the number of atoms present in 1 mole carbon-12 is 6.023 x 10^23.
(Answer) This unit is the number of atoms in 12 grams of carbon-12 and known as Avogadro's number.
Answer:
protons : 10
electron : 10
neutron : 10
Explanation:
Protons will usually be the same as the electrons when its a <u>Atom</u> (when its a ion or covalent bond or simple bond they will most likely be different)
the atomic number represents protons and electrons
the mass number - the atomic number = neutron
The expected speed is v = 85.5 km/h
v = 85.5 km/h = (85.5 km/h)*(0.2778 (m/s)/(km/h)) = 23.75 m/s
If there is an uncertainty of 2 meters in measuring the position, then within a 1-second time interval:
The lower measurement for the speed is v₁ = 21.75 m/s,
The upper measurement for the speed is v₂ = 25.75 m/s.
The range of variation is
Δv = v₂ - v₁ = 4 m/s
The uncertainty in measuring the speed is
Δv/v = 4/23.75 = 0.1684 = 16.84%
Answer: 16.8%