<span>2 C2H6(g) + 5 O2(g) --------> 4 CO(g) + 6 H2O(g)
</span>
Based on the data provided, there are 25 g of calcium carbonate in 1.505 × 10^23 atoms.
<h3>What is the moles of calcium carbonate in 1.505 × 10^23 atoms of calcium carbonate?</h3>
The mole of a substance can be calculated as follows:
- Moles of substance = number of particles/6.02 × 10^23
Moles of calcium carbonate = 1.505 × 10^23/6.02 × 10^23
Moles of calcium carbonate = 0.25 moles
The mass of calcium carbonate in 0.25 moles is calculated as follows:
- mass = moles × molar mass
molar mass of a calcium carbonate = 100 g/mol
mass of calcium carbonate = 0.25 × 100 = 25 g.
Therefore, there are 25 g of calcium carbonate in 1.505 × 10^23 atoms.
Learn more about molar mass and mass at: brainly.com/question/15476873
The answer is B: friction.
A definition of friction is a resistance of an object against another, for example a tire against mud, the tire would add friction against the mud to pull away from it.
I don’t need brainliest but please just mark thanks to this answer that would help me a lot, have a nice day :)
The correct answer would be option 1. The mole ratio of butane to carbon dioxide is 1:4. Looking at the balanced chemical reaction, we see that we need 2 moles of butane to produce 8 moles of carbon dioxide. So, it is 2:8. Simplifying this by dividing both to 2, we have 1:4.