Answer:
<h3>y≤9</h3>
Step-by-step explanation:
Answer: approximately 49 feets
Step-by-step explanation:
The diagram of the tree is shown in the attached photo. The tree fell with its tip forming an angle of 36 degrees with the ground. It forms a right angle triangle,ABC. Angle C is gotten by subtracting the sum of angle A and angle B from 180(sum of angles in a triangle is 180 degrees).
To determine the height of the tree, we will apply trigonometric ratio
Tan # = opposite/ adjacent
Where # = 36 degrees
Opposite = x feets
Adjacent = 25 feets
Tan 36 = x/25
x = 25tan36
x = 25 × 0.7265
x = 18.1625
Height of the tree from the ground to the point where it broke = x = 18.1625 meters.
The entire height of the tree would be the the length of the fallen side of the tree, y + 18.1625m
To get y, we will use Pythagoras theorem
y^2 = 25^2 + 18.1625^2
y^2 = 625 + 329.88
y^2 = 954.88
y = √954.88 = 30.9 meters
Height of the tree before falling was
18.1625+30.9 = 49.0625
The height of the tree was approximately 49 feets
4c+3=15
You need to get rid of the 3
So you minus it from each side so you
4c=12
12/4=3
So c =3
1. (0.5)2=1
2. (-0.2) + (-0.05) = -0.25
3. |-3 + 2.75| = 0.25
4. -(-0.25) = 0.25
5. 2x - 1.75x = 0.25x
So your answers are 3 and 4.
I think it’s -6 but I’m not sure