I = E / R
If the resistors are in series, the current is 0.3 Amperes.
If the resistors are in parallel, the current is 1.25 Amperes.
Answer:
Friction:-
The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing inter molecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an
EG:-
A coaster sliding against a table.
Gravity:-
The force of gravity is the force with which the earth, moon, or other massively large object attracts another object towards itself. By definition, this is the weight of the object. All objects upon earth experience a force of gravity that is directed "downward" towards the center of the earth. The force of gravity on earth is always equal to the weight of the object as found
EG:-
The force that causes a car to coast downhill even when you aren't stepping on the gas.
Elastic:-
Elasticity is the ability of a material to return to its original shape after being stretched or compressed. When an elastic material is stretched or compressed, it exerts elastic force. This force increases the more the material is stretched or compressed.
EG:-
An archer's stretched bow
Answer:
<em><u>a) </u></em><em><u> </u></em><em><u>Carbonic acid</u></em>
<em><u>b</u></em><em><u>)</u></em><em><u> </u></em><em><u>ammonium hydroxide</u></em>
<em><u>c</u></em><em><u>)</u></em><em><u> </u></em><em><u>Aluminum phosphate</u></em>
<em><u>d</u></em><em><u>)</u></em><em><u> </u></em><em><u>Sodium hydroxide</u></em>
<em><u>e</u></em><em><u>)</u></em><em><u> </u></em><em><u>Gold trichloride</u></em>
Explanation:
<em>I</em><em> </em><em>hope this</em><em> </em><em>will help</em><em> </em><em>you</em><em> </em><em>buddy</em><em> </em>
Answer:
The angular momentum of the particle is 58.14 kg m²/s along positive z- axis and is independent of time .
Explanation:
Given that,
Mass = 1.70 kg
Position vector 
We need to calculate the angular velocity
The velocity is the rate of change of the position of the particle.



We need to calculate the angular momentum of the particle
Using formula of angular momentum

Where, p = mv
Put the value of p into the formula

Substitute the value into the formula



Hence, The angular momentum of the particle is 58.14 kg m²/s along positive z- axis and is independent of time .