1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
3 years ago
14

A football has a mass of 2 kg and it accelerates at 20 m/s2. What is its force? (You can use a calculator)

Physics
2 answers:
attashe74 [19]3 years ago
8 0
10 mps is the answer
kap26 [50]3 years ago
6 0

Answer:

The answer is 40mps.

Explanation:

1. Force = (mass of an object) x (acceleration)

2. Force = ( "has a mass of 2 kg" ) x ( "accelerates at 20 m/s^2" )

3. Plug the numbers into the formula

4. F = 2 x 20

5. F = 40 mps

<em>Hope I helped!! Please mark me branliest :)</em>

- sophi

You might be interested in
Radio waves have a longer wavelength than microwaves. What else is true<br> about radio waves?
Dennis_Churaev [7]

As it was explained in the Introductory Article on the Electromagnetic Spectrum, electromagnetic radiation can be described as a stream of photons, each traveling in a wave-like pattern, carrying energy and moving at the speed of light. In that section, it was pointed out that the only difference between radio waves, visible light and gamma rays is the energy of the photons. Radio waves have photons with the lowest energies. Microwaves have a little more energy than radio waves. Infrared has still more, followed by visible, ultraviolet, X-rays and gamma rays.

That should be able to help answer your question :)
7 0
3 years ago
volcanoes can form along all of the following except a) transform boundaries b) hot spots c) convergent boundaries d) divergent
elena-14-01-66 [18.8K]
A.) Transform Boundaries
4 0
3 years ago
Read 2 more answers
30cm³ of brine of relative density 1.15 and 42cm³ of water are mixed. What is the density of the final solution​
Aleks04 [339]

Answer:

I think it's the most important part in this

7 0
3 years ago
Two cars, initially at rest and 5 km apart at t=0 , simultaneously move toward each other. Car A travels at a constant speed of
Anastasy [175]

Answer:

<em>d. 268 s</em>

Explanation:

<u>Constant Speed Motion</u>

An object is said to travel at constant speed if the ratio of the distance traveled by the time taken is constant.

Expressed in a simple equation, we have:

\displaystyle v=\frac{d}{t}

Where  

v = Speed of the object

d = Distance traveled

t  = Time taken to travel d.

From the equation above, we can solve for d:

d = v . t

And we can also solve it for t:

\displaystyle t=\frac{d}{v}

Two cars are initially separated by 5 km are approaching each other at relative speeds of 55 km/h and 12 km/h respectively. The total speed at which they are approaching is 55+12 = 67 km/h.

The time it will take for them to meet is:

\displaystyle t=\frac{5}{67}

t = 0.0746 hours

Converting to seconds: 0.0746*3600 = 268.56

The closest answer is d. 268 s

8 0
3 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
Other questions:
  • HELP!!! FAST!!
    14·1 answer
  • What other structures is it near hypothalamus?
    10·1 answer
  • Which change will always result in an increase in the gravitational force between two objects?
    5·2 answers
  • In most cases, what happens to a liquid when it cools?
    11·1 answer
  • Determine the maximum voltage that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 180 cm2 and
    8·2 answers
  • Which force does not operate at a distance of 1 m?
    10·2 answers
  • A spring with k = 500 N/m stores 704 J. How far is it extended from the equilibrium position
    15·1 answer
  • A person hears the echo of his own voice from a distant hill after 2 seconds. How far away is the person from the hill, if the s
    14·1 answer
  • A circuit has a current of 2.4 A. The voltage is increased to 4 times its original value, while the resistance stays the same.
    12·2 answers
  • Condyloid joints are, logically enough, created by joints at condyle bone markings.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!