Mass of CaCl₂ = 0.732 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.

Answer:
See explanation
Explanation:
The reactivity of metals has a lot to do with their position in the electrochemical series. However, it is also known that metallic character decreases across the period. This implies that as we move from left to right along the periodic table. Sodium, magnesium, aluminum and silicon continues to decrease in metallic character. As a matter of fact, silicon is a metalloid and not a pure metal.
Sodium reacts with cold water to give a vigorous reaction,magnesium and aluminium reacts with steam at red heat.
Silicon does not react with water, even as steam, under normal conditions.
Answer:
See Explanation Below
Explanation:
A) The rate law can only be on the reactant side and you can only determine it after you get the net ionic equation because of spectators cancelling out. So in this case the rate law is k=[CH3Br]^1 [OH-]^1. The powers are there because the rxn is first order.
B) Since the rxn is first order anything you do to it will be the exact same "counter rxn" per say so since you are decreasing the OH- by 5 the rate will decease by 5
C) The rate will increase by 4 since you are doubling both you have to multiply them both.
Answer: There are
molecules present in 183.2 grams of
gas.
Explanation:
Given: Mass = 183.2 g
Number of moles is the mass of substance divided by its molar mass.
As molar mass of water is 18 g/mol. Therefore, moles of
are calculated as follows.

According to the mole concept, there are
molecules present in one mole of a substance.
Hence, molecules present in 10.17 moles are calculated as follows.

Thus, we can conclude that there are
molecules present in 183.2 grams of
gas.