Answer:
just look for the LCM of 6,8,12,9 then that will be your answer
Answer:
y(total cost)=35n+125
Step-by-step explanation:
First day: 19n+40
Second day: 16x+85
Total: 35n+125
Answer:
The sum of its 30 terms is 38167.5
Step-by-step explanation:
Given:
The First term in the AP is -504
The Sum of its 9 terms is -126
To Find:
The sum of its 30 terms = ?
Solution:
The sum of n terms of an AP:
![S_n = (\frac{n}{2} ) [ 2 a_1 + ( n - 1 ) d ]](https://tex.z-dn.net/?f=S_n%20%3D%20%28%5Cfrac%7Bn%7D%7B2%7D%20%29%20%5B%202%20a_1%20%2B%20%28%20n%20-%201%20%29%20d%20%5D)
The sum of 9 terms of an AP:
![S_9 = (\frac{9 }{2} ) [ 2(-504) + ( 9 - 1 )d ]](https://tex.z-dn.net/?f=S_9%20%3D%20%28%5Cfrac%7B9%20%7D%7B2%7D%20%29%20%5B%202%28-504%29%20%2B%20%28%209%20-%201%20%29d%20%5D)
![S_9 = (4.5 )[ 2 (-504)+ ( 8 ) d ]](https://tex.z-dn.net/?f=S_9%20%3D%20%284.5%20%29%5B%202%20%28-504%29%2B%20%28%208%20%29%20d%20%5D)

(-4536) +36d = -126
36 d = -126+4536
36 d= 4410

d = 122.5
The sum of its 30 terms is
![S_{30} = ( \frac{30 }{2 }) [ 2 (-504) + ( 30-1)(122.5) ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%20%28%20%5Cfrac%7B30%20%7D%7B2%20%7D%29%20%5B%202%20%28-504%29%20%2B%20%28%2030-1%29%28122.5%29%20%5D)
![S_{30} =(15) [ 2 (-504) + ( 29)(122.5) ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%2815%29%20%5B%202%20%28-504%29%20%2B%20%28%2029%29%28122.5%29%20%5D)
![S_{30} = [ 2 (-504)(15) + ( 29)(122.5)(15) ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%20%5B%202%20%28-504%29%2815%29%20%2B%20%28%2029%29%28122.5%29%2815%29%20%5D)
![S_{30} = [ -15120 + 53287.5 ]](https://tex.z-dn.net/?f=S_%7B30%7D%20%3D%20%5B%20-15120%20%2B%2053287.5%20%5D)

We write the expression:
((2 ^ (1/2)) * (2 ^ (3/4))) ^ 2
We use for this case the properties of lso exponents:
((2 ^ (1/2)) * (2 ^ (3/4))) ^ 2
((2 ^ (2/2)) * (2 ^ (6/4)))
((2 ^ (1)) * (2 ^ (3/2)))
((2 ^ (1 + 3/2))
((2 ^ (5/2))
answer:
((2 ^ (5/2))
option 2