Answer:
D. No, because the sample size is large enough.
Step-by-step explanation:
The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
If the sample size is higher than 30, on this case the answer would be:
D. No, because the sample size is large enough.
And the reason is given by The Central Limit Theorem since states if the individual distribution is normal then the sampling distribution for the sample mean is also normal.
From the central limit theorem we know that the distribution for the sample mean
is given by:
If the sample size it's not large enough n<30, on that case the distribution would be not normal.
It's asking for the "perimeter" of the molding as far as I can tell,
namely, how long is the border of that molding
notice the picture here
Answer:
B. 6.3%
Step-by-step explanation:
For each time that the coin is tosse, there are only two possible outcomes. Either it comes up tails, or it does not. The probability of coming up tails on a toss is independent of any other toss. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
Fair coin:
Equally as likely to come up heads or tails, so 
Probability that the first tails comes up on the 4th flip of the coin?
0 tails during the first three, which is P(X = 0) when n = 3.
Tails in the fourth, with probability 0.5. So



0.0625 * 100 = 6.25%
Rounding to the nearest tenth of a percent, the correct answer is:
B. 6.3%
1+2+8= 11
And she likes 8 out of the 11 tracks
So the probability is 8/11 or about 73%
There is no picture given but I’m assuming you need to simplify it. The answer is 9x + 12