Answer:
The net Electric field at the mid point is 289.19 N/C
Given:
Q = + 71 nC = 
Q' = + 42 nC = 
Separation distance, d = 1.9 m
Solution:
To find the magnitude of electric field at the mid point,
Electric field at the mid-point due to charge Q is given by:



Now,
Electric field at the mid-point due to charge Q' is given by:



Now,
The net Electric field is given by:


3 because opposites attract
The energy of an object as it is in motion is defined as Kinetic energy.
<u>Explanation:</u>
The energy that is attained by an object when it is moving is called as Kinetic energy. It is the amount of energy that is essential for inducing an acceleration in an object and making it to displace from its idle position to the destination. When an object attains the acceleration it can have this kinetic energy until there is a change in the speed of the object with which it moves.
The forms of energy changes and it can take any form like thermal, electrical, electromagnetic,etc. Potential and kinetic energy are the two things under which these forms are energy are grouped. There can be a transferring of Kinetic energy from one object to another. The kinetic energy can also take any form of energy.
Answer:
The speed of light is that medium is 281907786.2 m/s.
Explanation:
since the critical angle is Фc = 430, we know that the refractive index is given by:
n = 1/sin(Фc)
= 1/sin(430)
= 1.06
then if n is the refractive index of the medium and c is the speed of light, then the speed of light in the medium is given by:
v = c/n
= (3×10^8)/(1.06)
= 281907786.2 m/s
Therefore, the speed of light is that medium is 281907786.2 m/s.