You need to use Planck's law:
E = h·υ = (h·c)/λ
Without making all the calculations, a fraction is bigger than another when the denominator is smaller. Therefore you need to find the smallest wavelength (λ) which is 450nm.
You could also be helped by colors: in order of decreasing energy, you have blue - green - yellow - red.
In any case, the correct answer is a).
The magnitude of the magnetic force acting on the charge is 2.34×10⁻³ N.
<h3>What is magnetic force?</h3>
A magnetic force is the force that act in a magnetic field.
To calculate the magnetic force, we use the formula below.
Formula:
- F = qvB.........Equation 1
Where:
- F = magnetic force
- q = point charge
- v = Velocity of the the charge
- B = Field strength
From the question,
Given:
- q = 5.0×10⁻⁷ C
- v = 2.6×10⁵ m/s
- B = 1.8×10⁻² T
Substitute these values into equation 2
- F = (5.0×10⁻⁷)(2.6×10⁵)(1.8×10⁻²)
- F = 23.4×10⁻⁴
- F = 2.34×10⁻³ N
Hence, the magnitude of the magnetic force acting on the charge is 2.34×10⁻³ N.
Learn more about magnetic force here: brainly.com/question/2279150
#SPJ12
Answer:
18 N/C
Explanation:
Given that:
Electric field constant, k = 9*10^9 N/c
Distance, r = 10^-8 m
Dipole moment, p = 10^-33
Using the relation for electric field due to dipole :
E = [2KP / r³]
E = (2 * (9*10^9) * 10^-33) ÷ (10^-8)^3
E = (18 * 10^9 * 10^-33) ÷ 10^-24
E = [18 * 10^(9-33)] ÷ 10^-24
E = (18 * 10^-24) / 10^-24
E = 18 * 10^-24+24
E = 18 * 10^0
E = 18 N/C
Answer:
hgvugvuhvjhvjhvkjbijbuobojbljbokboknokniuboublnoknoijopjlknoknoibiobokb
Explanation:
h