Answer : The initial temperature of system 2 is, 
Explanation :
In this problem we assumed that the total energy of the combined systems remains constant.
The mass remains same.
where,
= heat capacity of system 1 = 19.9 J/mole.K
= heat capacity of system 2 = 28.2 J/mole.K
= final temperature of system =
= initial temperature of system 1 =
= initial temperature of system 2 = ?
Now put all the given values in the above formula, we get
Therefore, the initial temperature of system 2 is, 
Energy is absorbed in the reaction
For reaction
2 A + B ------------> 2 C
Rate = K [ A ]² [ B ]
<span> the order with respect to A is 2 and the order overall is 3.
</span>
hope this helps!
Answer:
120 liters
Explanation:
From the question,
Applying boyles law
PV = P'V'................ Equation 1
Where P = initial pressure, V = Initial Volume, P' = Final pressure, V' = Final Volume.
make V' The subject of the equation
V' = PV/P'............. Equation 2
Given: P = 2 kpa, V = 60 liters, P' = 1 kpa
Substitute these values into equation 2
V' = (2×60)/1
V' = 120 liters
Hence the right option is A. 120 liters