Answer:
80.7 L
Step-by-step explanation:
This looks like a case where we can use the Ideal Gas Law to calculate the volume.
pV = nRT Divide both sides by p
V = (nRT)/p
=====
Data:
n = 5.00 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = (120 +273.15) K = 393.15K
p = 1520 mmHg × 1 atm/760 mmHg = 2.00 atm
=====
Calculation:
V = (5.00 × 0.082 06 × 393.15)/2.00
V = 161.3/2.00
V = 80.7 L
"I" symbol means the current goes through the system (imagine the 'I' being a line, like a circuit connecting [power to the device]) "O" symbol means the current does not go through the system. ( the circle is an open circuit, having no power flowing through it
<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O