Calcium forms an ion with a positive 2 charge and chlorine forms an ion with a negative one charg, so the formula is <span>CaC<span>l2</span></span>
Group 1 metals and group 2 metals form positive ions by losing 1 and 2 electrons respectively. Non-metals in group 17 gain 1, group 16 gain 2 and group 15 gain 3. Elements which lose electrons form positive ions while elements that gain electrons form negative ions.
To write a formula, you must balance charges so the overall charge is zero. A simple way to do this is to swap the # of the ion's charge and make it the subscript of the other ion. However, leave off the number 1 and reduce to lowest whole number ratio.
Answer:
340 N
Explanation:
<u>Force formula</u>
The force formula is defined by Newton's second law of motion: Force exerted by an object equals mass times acceleration of that object: F = m ⨉ a. To use this formula, you need to use SI units: Newtons for force, kilograms for mass, and meters per second squared for acceleration.
<u>Equilibrium</u>
It is a state of rest or balance due to the equal action of opposing forces. equal balance between any powers, influences, etc.; equality of effect. mental or emotional balance; equanimity: The pressures of the situation caused her to lose her equilibrium.<u>
</u>
Option D
A precipitate is the term for a solid that forms when two solutions are mixed
<u>Explanation:</u>
A solid set from a couple of solutions is termed a precipitate. A precipitate is an unsolved solid that makes when a pair of solutions are fused and react chemically. Unsolvable means that the solid will not melt. When the effect transpires in a liquid solution, the solid developed is denominated the 'precipitate'.
The substance that generates the solid to make is termed the 'precipitant'. Seldom the development of a precipitate symbolizes the existence of a chemical reaction. Precipitation may additionally transpire immediately from a supersaturated solution.
Answer:
carbon because organic compounds are made up of hydrogen and carbon
Answer:
a) Kb = 10^-9
b) pH = 3.02
Explanation:
a) pH 5.0 titration with a 100 mL sample containing 500 mL of 0.10 M HCl, or 0.05 moles of HCl. Therefore we have the following:
[NaA] and [A-] = 0.05/0.6 = 0.083 M
Kb = Kw/Ka = 10^-14/[H+] = 10^-14/10^-5 = 10^-9
b) For the stoichiometric point in the titration, 0.100 moles of NaA have to be found in a 1.1L solution, and this is equal to:
[A-] = [H+] = (0.1 L)*(1 M)/1.1 L = 0.091 M
pKb = 10^-9
Ka = 10^-5
HA = H+ + A-
Ka = 10^-5 = ([H+]*[A-])/[HA] = [H+]^2/(0.091 - [H+])
[H+]^2 + 10^5 * [H+] - 10^-5 * 0.091 = 0
Clearing [H+]:
[H+] = 0.00095 M
pH = -log([H+]) = -log(0.00095) = 3.02