Answer:
The final temperature of sulfur dioxide gas is 215.43 C
Explanation:
Gay Lussac's Law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that if the temperature increases the pressure increases, while if the temperature decreases the pressure decreases. In other words, the pressure and temperature are directly proportional quantities.
Mathematically, the Gay-Lussac law states that, when a gas undergoes a transformation at constant volume, the quotient of the pressure exerted by the temperature of the gas remains constant:

Assuming you have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment, by varying the temperature to a new value T2, then the pressure will change to P2, and it will be true:

The reference temperature is the absolute temperature (in degrees Kelvin)
In this case:
- P1= 0.450 atm
- T1= 20 C= 293.15 K (being 0 C= 273.15 K)
- P2=0.750 atm
- T2= ?
Replacing:

Solving:


T2=488.58 K
Being 273.15 K= 0 C, then 488.58 K= 215.43 C
<u><em>The final temperature of sulfur dioxide gas is 215.43 C</em></u>
Answer: 2) Chloroform & Caustic potash
Explanation:
The carbylamine reaction is a kind of chemical test which is done to detect primary amines in an unknown solution. It cannot detect secondary and tertiary amines.
The reaction involves the heating with up of the unknown solution with alcoholic potassium hydroxide or caustic potash and the chloroform.
In the presence of primary amine, the production of isocyanide results.
Answer:
3.9 laps
Explanation:
Step 1: Given data
Length of the hamster track (L): 255 cm
Total distance to be run (D): 10 m
Step 2: Convert "D" to centimeters
We will use the relationship 1 m = 100 cm.
10 m × (100 cm/1 m) = 1.0 × 10³ cm
Step 3: Calculate the number of laps (n) that the hamster should run
We will use the following expression.
n = D/L
n = 1.0 × 10³ cm/255 cm
n = 3.9
Answer is: -601,2 kJ/mol
Chemical reaction: Mg(OH)₂ → MgO + H₂O.
ΔHrxn = 37,5 kJ/mol.
ΔHf(Mg(OH)₂) = <span>−924,5 kJ/mol.
</span>ΔHf(H₂O) = <span>−285,8 kJ/mol.
</span>ΔHrxn -enthalpy of reaction.
ΔHf - enthalpy of formation.
<span>ΔHrxn=∑productsΔHf−∑reactantsΔHf.
</span>ΔHf(MgO) = -924,5 kJ/mol - (-285,8 kJ/mol) + 37,5 kj/mol.
ΔHf(MgO) = -601,2 kJ/mol.
One times anything is the same number. 1 x 2900= 2900