Since f=ma assuming you knew the mass of the marble and the total amount of force acting on it than you would divide the amount of force by the mass.
Answer:
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣀⣀⣾⣿⣿⣿⣿
⣿⣿⣿⣿⣿⡏⠉⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿
⣿⣿⣿⣿⣿⣿⠀⠀⠀⠈⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠉⠁⠀⣿
⣿⣿⣿⣿⣿⣿⣧⡀⠀⠀⠀⠀⠙⠿⠿⠿⠻⠿⠿⠟⠿⠛⠉⠀⠀⠀⠀⠀⣸⣿
⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣴⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡟⠀⠀⢰⣹⡆⠀⠀⠀⠀⠀⠀⣭⣷⠀⠀⠀⠸⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠈⠉⠀⠀⠤⠄⠀⠀⠀⠉⠁⠀⠀⠀⠀⢿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⢾⣿⣷⠀⠀⠀⠀⡠⠤⢄⠀⠀⠀⠠⣿⣿⣷⠀⢸⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡀⠉⠀⠀⠀⠀⠀⢄⠀⢀⠀⠀⠀⠀⠉⠉⠁⠀⠀⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿
Explanation:
Answer:
Explanation:
Explanation:
As you know, the empirical formula tells you what the smallest whole number ratio that exists between the atoms that make up a compound is.
In your case, you know that the empirical formula is
NH Cl
2
, which means that the regardles of how many atoms of each element you get in the actual compound, the ratio that exists between them will always be
1:2:1.
What you actually need to determine is how many empirical formulas are needed to get to the molecular formula.
Notice that the problem provides you with the molar mass of the compound. This means that you can use the molar mass of the empirical formula to determine exactly how many atoms you need to form the compound's molecule.
molar mass empirical formula×n=molar mass compound
To get the molar mass of the empirical formula, use the molar masses of its constituent atoms
14.0067 g/mol+2×1.00794 g/mol+35.453 g/mol=51.48 g/mol≈
51.5 g/mol
This means that you have
51.5g/mol×n=51.5g/mol
As you can see, you have
n=1.
This means that the empirical formula and the molecular formula are equivalent,
NH Cl.
2
Answer: Volume of CO2 is 89127 mL
Explanation: The reaction that takes place is: C2H2 + O2 --> CO2 + H2O
The amount of C2H2 that react allow us to predict the amount of CO2 that will be obtained

26g/1mol is molar mass of C2H2 and 2/4 is the molar relation between CO2 and C2H2 in this reaction. Canceling units, at the end mol of CO2 are obtained
Now with the moles of CO2 and the ideal gases equation is possible to calculate the volumen occupied by the gas.
PV = RnT where P: pressure, V: volume, R: ideal gas constant, n: moles and T: temperature expressed in K (add 273,15 to °C temperature: 37,4°C + 273,15 = 310,55K)
V= RnT/P

To express volume in mL multiply the L result by 1000 which equals 89127 mL