Answer:
Explanation:
By definition, the momentum is given by:
p=m*v
Where,
m: car mass
v: speed of the car
Substituting the values in the given definition we have:
p=3*154
Answer:
the momentum of the car is:
4620g * cm/s
An: Calculate the molarity of a solution made by adding 120 g of NaOH (40.00 g/mol) to enough water to make 500.0 mL of solution. a) 4.0 M b) 6.0 M c) 1.0 ...
Explanation:
Answer:
Methanol would be used as a reagent in excess, since it is a very low-cost solvent. For product isolation, the first thing to do is remove the methanol through a distillation process. The residue produced can be dissolved in diethyl ether. Using a NaHCO₃ solution, extraction is performed. When it separates into two phases, the product will be in the ether and the reagent in the aqueous phase. The ether can also be removed by distillation, and at the end of this process you will have the product you want.
Explanation:
1) To find the change in enthalpy, determine the difference between the potential energy of the products and the potential energy of the reactants. (on this diagram, C-A) To find the activation energy, find the difference between the potential energy of the reactants and the "peak" of the curve (on this diagram, B-A). For this diagram, both the enthalpy and activation energy are positive.
2) If the reaction was exothermic, enthalpy would be negative, and the potential energy of the reactants would be greater than the potential energy of the products.
Ionic and covalent bonds are both strong intermolecular forces. They are generally both crystalline in structure. But relatively speaking, ionic bonds are much stronger. As a consequence, they have inherent properties of higher boiling points, higher melting points, lower volatility, etc. Also, ionic bonds display conductive properties because they are strong electrolytes. <em>Thus, the answer is 5) higher melting points.</em>