<u>Answer:</u>
The mass of the atom depends on the sub atomic particles present in the nucleus of an atom.
That is, the protons and the neutrons.
Electrons are present around the nucleus and the mass is negligible since its mass is very very less.
<em>mass of a proton = </em>
<em>mass of a neutron = </em>
<em>mass of an electron = </em>
Mass number represents the mass of one particular isotope and it is a whole number for example,
Mass number is 13 and atomic number is 6 for the carbon isotope C-13.
Atomic mass is different from mass number and it is a fraction since it is the average atomic mass of all the isotopes of an atom.
Atomic mass of C is 12.011 amu which we see in the periodic table is the average atomic mass of isotopes C-12, C-13 and C-14.
We can use the ideal gas law equation to find the volume occupied by oxygen gas
PV = nRT
where ;
P - pressure - 52.7 kPa
V - volume
n - number of oxygen moles - 12.0 g / 32 g/mol = 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values in the equation
52 700 Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
V = 17.6 L
volume of the gas is 17.6 L
Answer:
- Absolute zero is - 459.67 °F
Explanation:
<u>1) Convert absolute zero to celsius:</u>
- 0 K = - 273.15°C ( this is per definition of the scale)
<u>2) Convert - 273.15°C to Fahrenheit:</u>
- T (°F) = T (°C) × 1.8 + 32 (this is the conversion equation=
- T (°F) = - 273.15 × 1.8 + 32 = - 459.67 °F ← answer
Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
The ribosomes are the ones delivering the products of the endoplasmic reticulum