Answer:
13 m
Step-by-step explanation:
The ladder forms a right triangle with the wall that has legs of 5 and 12. We need to solve for the length of the ladder, which in this case, is the hypotenuse of the right triangle. You could use the Pythagorean Theorem but there's an easier way to do this. We can use the 5 - 12 - 13 Pythagorean triple so we know that the length of the ladder is 13 m.
If you've started pre-calculus, then you know that the derivative of h(t)
is zero where h(t) is maximum.
The derivative is h'(t) = -32 t + 96 .
At the maximum ... h'(t) = 0
32 t = 96 sec
t = 3 sec .
___________________________________________
If you haven't had any calculus yet, then you don't know how to
take a derivative, and you don't know what it's good for anyway.
In that case, the question GIVES you the maximum height.
Just write it in place of h(t), then solve the quadratic equation
and find out what 't' must be at that height.
150 ft = -16 t² + 96 t + 6
Subtract 150ft from each side: -16t² + 96t - 144 = 0 .
Before you attack that, you can divide each side by -16,
making it a lot easier to handle:
t² - 6t + 9 = 0
I'm sure you can run with that equation now and solve it.
The solution is the time after launch when the object reaches 150 ft.
It's 3 seconds.
(Funny how the two widely different methods lead to the same answer.)
The answer is from AL2006
Answer:
Its 49
Step-by-step explanation:
Can i get brainliest
30, you could just multiply both numbers, but it's also better to list out the factor until both match
Answer:
S = 9.9
Step-by-step explanation:
First, multiply by -3 to remove fractions:
so:
S - 38.4 = -28.5
Take all values to one side by adding 38.4 to both sides
S = 9.9