Answer:
a) See figure attached
b) ![x = \frac{sin(124)}{sin(34)} 80.086 = 118.732 ft](https://tex.z-dn.net/?f=%20x%20%3D%20%5Cfrac%7Bsin%28124%29%7D%7Bsin%2834%29%7D%2080.086%20%3D%20118.732%20ft)
c) ![h = 35 sin (59) = 30.0 ft](https://tex.z-dn.net/?f=%20h%20%3D%2035%20sin%20%2859%29%20%3D%2030.0%20ft)
So then the heigth for the building is approximately 30 ft
Step-by-step explanation:
Part a
We can see the figure attached is a illustration for the problem on this case.
Part b
For this case we can use the sin law to find the value of r first like this:
![\frac{sin(22)}{35 ft} =\frac{sin(59)}{r}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bsin%2822%29%7D%7B35%20ft%7D%20%3D%5Cfrac%7Bsin%2859%29%7D%7Br%7D)
![r= \frac{sin(59)}{sin(22)} 35 ft = 80.086ft](https://tex.z-dn.net/?f=%20r%3D%20%5Cfrac%7Bsin%2859%29%7D%7Bsin%2822%29%7D%2035%20ft%20%3D%2080.086ft)
Then we can use the same law in order to find the valueof x liek this:
![\frac{sin(124)}{x ft} =\frac{sin(34)}{80.086}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bsin%28124%29%7D%7Bx%20ft%7D%20%3D%5Cfrac%7Bsin%2834%29%7D%7B80.086%7D)
![x = \frac{sin(124)}{sin(34)} 80.086 = 118.732 ft](https://tex.z-dn.net/?f=%20x%20%3D%20%5Cfrac%7Bsin%28124%29%7D%7Bsin%2834%29%7D%2080.086%20%3D%20118.732%20ft)
And that represent the distance between Sara and Paul.
Part c
For this cas we are interested on the height h on the figure attached. We can use the sine indentity in order to find it.
![sin (59) = \frac{h}{35}](https://tex.z-dn.net/?f=%20sin%20%2859%29%20%3D%20%5Cfrac%7Bh%7D%7B35%7D)
And if we solve for h we got:
![h = 35 sin (59) = 30.0 ft](https://tex.z-dn.net/?f=%20h%20%3D%2035%20sin%20%2859%29%20%3D%2030.0%20ft)
So then the heigth for the building is approximately 30 ft
Answer:
radius 12 units = 452.16 units²
diameter 16.8 units = 221.5584 units²
radius 3.4 units = 36.2984 units²
diameter 10 units = 78.5 units²
Formula for area of circle: ![\pi r^{2}](https://tex.z-dn.net/?f=%5Cpi%20r%5E%7B2%7D)
Assuming you meant 45x^2y^2+18*3 , it should be 9(5x^2y^2+6)
Formula: V = (2/3) π r 3.
Radius is 3cm.
So, now we can plug it in to solve for the volume.
V = (2/3) π 3^3
First, let's multiply 3^3.
3^3 = 27
Then, 27 x π = 84.82
After, multiply by 2/3.
84.82 x 2/3 = 56.55
Lastly, round 56.55 to the nearest tenth of a cubic centimeter.
56.55 = 56.6
Therefore the volume of a hemisphere with a radius of 3cm is 56.6cm^3.
Answer:
![sin (-x) cos (-x) csc (-x) =cos(x)](https://tex.z-dn.net/?f=sin%20%28-x%29%20cos%20%28-x%29%20csc%20%28-x%29%20%3Dcos%28x%29)
Step-by-step explanation:
We know by definition that the cosine is an even function, therefore
![cos (-x) = cos (x)](https://tex.z-dn.net/?f=cos%20%28-x%29%20%3D%20cos%20%28x%29)
We also know that the sin is an odd function, therefore
![sin (-x) = -sin (x)](https://tex.z-dn.net/?f=sin%20%28-x%29%20%3D%20-sin%20%28x%29)
By definition:
![cscx = \frac{1}{sinx}.](https://tex.z-dn.net/?f=cscx%20%3D%20%5Cfrac%7B1%7D%7Bsinx%7D.)
Then:
![csc(-x) = \frac{1}{sin(-x)}.](https://tex.z-dn.net/?f=csc%28-x%29%20%3D%20%5Cfrac%7B1%7D%7Bsin%28-x%29%7D.)
![csc(-x) = -\frac{1}{sin(x)}.](https://tex.z-dn.net/?f=csc%28-x%29%20%3D%20-%5Cfrac%7B1%7D%7Bsin%28x%29%7D.)
Using these trigonometric properties we can simplify the expression
![sin (-x) cos (-x) csc (-x)= -sin(x)cos(x)*(-\frac{1}{sin(x)})\\\\sin (-x) cos (-x) csc (-x)=cos(x)](https://tex.z-dn.net/?f=sin%20%28-x%29%20cos%20%28-x%29%20csc%20%28-x%29%3D%20-sin%28x%29cos%28x%29%2A%28-%5Cfrac%7B1%7D%7Bsin%28x%29%7D%29%5C%5C%5C%5Csin%20%28-x%29%20cos%20%28-x%29%20csc%20%28-x%29%3Dcos%28x%29)