HUNDRED GRAMS too because of the law of conservation of mass. The law of conservation of mass states that mass is neither created nor destroyed. So both sides will have the same mass
Answer:
edfgkvisiaixiicciciviicsiaiaqwododc
Answer:
Sodium bicarbonate
Explanation:
Sodium bicarbonate ( NaHCO₃ ) -
Sodium bicarbonate , according to the IUPAC nomenclature , its name is sodium hydrogen carbonate ,and in common terms also refereed to as baking soda .
It is a white crystalline solid , it is basic in nature .
<u>The cation and anion of this salt are the sodium ion ( Na⁺) and the anion bicarbonate anion (HCO³⁻) .</u>
<u />
Answer:
pKa = 3.675
Explanation:
∴ <em>C</em> X-281 = 0.079 M
∴ pH = 2.40
let X-281 a weak acid ( HA ):
∴ HA ↔ H+ + A-
⇒ Ka = [H+] * [A-] / [HA]
mass balance:
⇒<em> C</em> HA = 0.079 M = [HA] + [A-]
⇒ [HA] = 0.079 - [A-]
charge balance:
⇒ [H+] = [A-] + [OH-]... [OH-] is negligible; it comes from to water
⇒ [H+] = [A-]
∴ pH = - log [H+] = 2.40
⇒ [H+] = 3.981 E-3 M
replacing in Ka:
⇒ Ka = [H+]² / ( 0.079 - [H+] )
⇒ Ka = ( 3.981 E-3 )² / ( 0.079 - 3.981 E-3 )
⇒ Ka = 2.113 E-4
⇒ pKa = - Log ( 2.113 E-4 )
⇒ pKa = 3.675
The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g