Answer:
(3,-1)
Step-by-step explanation:
So we have the system of equations:

As directed, add straight down. The y-variable will cancel:

Now, divide both sides by 5. The left cancels:

So x is 3.
Now, substitute 3 for x in either of the equations:

Substitute 3 for x:

Multiply:

Subtract 9 from both sides:

So, our answer is: x=3, y=-1 or (3,-1).
And we are done :)
Answer:
What do you need help on?
Step-by-step explanation:
It’s D that is the answer
Confused what the question is. Are you looking for the product or the zeroes?
If you are looking for the product, then:
Use foil to get: sec²(1) - sec²(-csc²) -1(1) -1(-csc²)
= sec² + sec²csc² - 1 + csc²
= sec²csc² + sec² + csc² - 1
= sec²csc² + 1 - 1 (NOTE: sec² + csc² = 1 is an identity)
= sec²csc²
Answer: sec²csc²
***************************************************
If you are looking for the zeroes, then:
Using the zero product property, set each factor equal to zero and solve.
<u>First factor:</u>
sec²Θ - 1 = 0
sec²Θ = 1
secΘ = 1, -1
remember that secΘ is 
= 1
= -1
cross multiply to get:
cosΘ = 1 cosΘ = -1
use the unit circle (or a calculator) to find that Θ = 0 and π
<u>Second factor:</u>
1 - csc²Θ = 0
1 = csc²Θ
1, -1 = cscΘ
remember that cscΘ is 
= 1
= -1
cross multiply to get:
sinΘ = 1 sinΘ = -1
use the unit circle (or a calculator) to find that Θ =
and
Answer: 0, π,
,
10 would be the answer I believe.