.500 mol ( 6.02x10^23 molecules/1 mol) = 3.01x10^23
First, We have to write the equation for neutralization:
Ba(OH)2 + 2HCl → BaCl2 + 2H2O
so, from the equation of neutralization, we can get the ratio between Ba(OH)2 and HCl. Ba(OH)2 : HCl = 1:2
- We have to get the no.of moles of Ba(OH)2 to do the neutralization as we have 25.9ml of 3.4 x 10^-3 M Ba(OH)2.
So no.of moles of Ba(OH)2 = (25.9ml/1000) * 3.4x10^-3 = 8.8 x 10^-5 mol
and when Ba(OH)2 : HCl = 1: 2
So the no.of moles of HCl = 2 * ( 8.8x10^-5) = 1.76 x 10^-4 mol
So when we have 1.76X10^-4 Mol in 16.6 ml (and we need to get it per liter)
∴ the molarity = no.of moles / mass weight
= (1.76 x 10^-4 / 16.6ml)* (1000ml/L) = 0.0106 M Hcl
B. Calcium! I hope this help.
If your bones don't have enough calcium you get osteoporosis.
A solution may exist in any phase so your answer is D. any of the above
hope this helps :)
Answer:
pH before addition of KOH = 4.03
pH after addition of 25 ml KOH = 7.40
pH after addition of 30 ml KOH = 7.57
pH after addition of 40 ml KOH = 8.00
pH after addition of 50 ml KOH = 10.22
pH after addition 0f 60 ml KOH = 12.3
Explanation:
pH of each case in the titration given below
(6) After addition of 60 ml KOH
Since addition of 10 ml extra KOH is added after netralisation point.
Concentration of solution after addition 60 ml KOH is calculated by
M₁V₁ = M₂V₂
or, 0.23 x 10 = (50 + 60)ml x M₂
or M₂ = 0.03 Molar
so, concentration of KOH = 0.03 molar
[OH⁻] = 0.03 molar
pOH = 0.657
pH = 14 - 0.657 = 13.34