Answer:
537.68 torr.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁).</em>
P₁ = 485 torr, T₁ = 40°C + 273 = 313 K,
P₂ = ??? torr, T₂ = 74°C + 273 = 347 K.
∴ P₂ = (P₁T₂)/(P₁) = (485 torr)(347 K)/(313 K) = 537.68 torr.
The products for the complete combustion of a hydrocarbon in excess air is carbon dioxide and water. Any hydrocarbon when reacted with oxygen will always yield the said products. Incomplete combustion, on the other hand, yields carbon monoxide and water.
Answer:
because it is two substances reacting together to create a new substance
Explanation:
when iron rusts, iron molecules react with the oxygen molecules creating iron oxide aka rust.
Answer:
Phosphorus is more electronegative than hydrogen
Explanation:
Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons towards itself thereby making a molecule to be polar. The Pauling scale is the most commonly used to measure electronegativity. Fluorine (the most electronegative element) is assigned a value of 4.0 on the Pauling's scale, and values range down to caesium and francium which are the least electronegative elements.
Electronegativity increases from left to right across the periodic table (across the period) hence, phosphorus is far more electronegative than hydrogen. Being more electronegative than hydrogen, phosphorus attracts the bonding electron pair of the P-H bond closer to itself than hydrogen. Since the electrons of the bond are closer to phosphorus than hydrogen, the phosphorus atom acquires a partial negative charge while the hydrogen atom acquires a partial positive charge.
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.