The last part answers the first part for you, just look at the y-values.
In other words:
<em>A'</em><em> </em>(-8, 2)
<em>B'</em> (-4, 3)
<em>C'</em> (-2, 8)
<em>D'</em> (-10, 6)
Explanation:
When you reflect any point over the x-axis, the y-value of the ordered pair is going to change.
This makes sense especially considering that the x-axis is horizontal, so the only way you could cross is to move up or down. If you were to move left or right, you'd only be able to cross the y-axis, since it's vertical.
Now for the last part, as I mentioned above, if you are reflecting across the y-axis, the x-values of the ordered pair is going to change.
<em>A'</em><em>'</em> (8, 2)
<em>B'</em><em>'</em> (4, 3)
<em>C'</em><em>'</em> (2, 8)
<em>D'</em><em>'</em> (10, 6)
Take note that the only thing that changes for the respective value is its sign, while the number itself stays the same.
he solution set is
{
x
∣
x
>
1
}
.
Explanation
For each of these inequalities, there will be a set of
x
-values that make them true. For example, it's pretty clear that large values of
x
(like 1,000) work for both, and negative values (like -1,000) will not work for either.
Since we're asked to solve a "this OR that" pair of inequalities, what we'd like to know are all the
x
-values that will work for at least one of them. To do this, we solve both inequalities for
x
, and then overlap the two solution set
Answer:
<h3>$ 20 </h3>
Step-by-step explanation:

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>Can</em><em> </em><em>I</em><em> </em><em>have</em><em> </em><em>the</em><em> </em><em>brainliest</em><em> </em><em>please</em><em>?</em>
<em>Have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>
Answer:
Step-by-step explanation:
We have been given that Wren’s first display box is 6 inches long, 9 inches wide, and 4 inches high. We are asked to find the volume of display box.
We know that the box is in form of cuboid, so its volume would be length times width times height.


Therefore, the volume of the display box is 216 cubic inches.