(x-8) ^ 2 = 121
(x-8) = + / - root (121)
x = 8 +/- root (121)
The solutions are:
x1 = 8 + root (121)
x2 = 8 - root (121)
2a ^ 2 = 8a-6
2a ^ 2-8a + 6 = 0
a ^ 2-4a + 3 = 0
(a-1) (a-3) = 0
The solutions are:
a1 = 1
a2 = 3
x ^ 2 + 12x + 36 = 4
x ^ 2 + 12x + 36-4 = 0
x ^ 2 + 12x + 32 = 0
(x + 4) (x + 8) = 0
The solutions are:
x1 = -8
x2 = -4
x ^ 2-x + 30 = 0
x = (- b +/- root (b ^ 2 - 4 * a * c)) / 2 * a
x = (- (- 1) +/- root ((- 1) ^ 2 - 4 * (1) * (30))) / 2 * (1)
x = (1 +/- root (1 - 120))) / 2
x = (1 +/- root (-119))) / 2
x = (1 +/- root (119) * i)) / 2
The solutions are:
x1 = (1 + root (119) * i)) / 2
x2 = (1 - root (119) * i)) / 2
Answer:
emmm nose ponga lo en español para ayudarles
At at least one die come up a 3?We can do this two ways:) The straightforward way is as follows. To get at least one 3, would be consistent with the following three mutually exclusive outcomes:the 1st die is a 3 and the 2nd is not: prob = (1/6)x(5/6)=5/36the 1st die is not a 3 and the 2nd is: prob = (5/6)x((1/6)=5/36both the 1st and 2nd come up 3: prob = (1/6)x(1/6)=1/36sum of the above three cases is prob for at least one 3, p = 11/36ii) A faster way is as follows: prob at least one 3 = 1 - (prob no 3's)The probability to get no 3's is (5/6)x(5/6) = 25/36.So the probability to get at least one 3 is, p = 1 - (25/36) = 11/362) What is the probability that a card drawn at random from an ordinary 52 deck of playing cards is a queen or a heart?There are 4 queens and 13 hearts, so the probability to draw a queen is4/52 and the probability to draw a heart is 13/52. But the probability to draw a queen or a heart is NOT the sum 4/52 + 13/52. This is because drawing a queen and drawing a heart are not mutually exclusive outcomes - the queen of hearts can meet both criteria! The number of cards which meet the criteria of being either a queen or a heart is only 16 - the 4 queens and the 12 remaining hearts which are not a queen. So the probability to draw a queen or a heart is 16/52 = 4/13.3) Five coins are tossed. What is the probability that the number of heads exceeds the number of tails?We can divide
Answer: 40.2t - 25
Step-by-step explanation:
-0.2t - 5 (-8t + 5)
-0.2t + 40t -25
39.8t - 25