![\bf \begin{array}{clclll} -6&+&6\sqrt{3}\ i\\ \uparrow &&\uparrow \\ a&&b \end{array}\qquad \begin{cases} r=\sqrt{a^2+b^2}\\ \theta =tan^{-1}\left( \frac{b}{a} \right) \end{cases}\qquad r[cos(\theta )+i\ sin(\theta )]\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bclclll%7D%0A-6%26%2B%266%5Csqrt%7B3%7D%5C%20i%5C%5C%0A%5Cuparrow%20%26%26%5Cuparrow%20%5C%5C%0Aa%26%26b%0A%5Cend%7Barray%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ar%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%5C%5C%0A%5Ctheta%20%3Dtan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright%29%0A%5Cend%7Bcases%7D%5Cqquad%20r%5Bcos%28%5Ctheta%20%29%2Bi%5C%20sin%28%5Ctheta%20%29%5D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)

now, notice, there are two valid angles for such a tangent, however, if we look at the complex pair, the "a" is negative and the "b" is positive, that means, "x" is negative and "y" is positive, and that only occurs in the 2nd quadrant, so the angle is in the second quadrant, not on the fourth quadrant.
thus
Drink the water so you have none left
Answer:
1.5
Step-by-step explanation:
Attached to this answer is the diagram of the box plot described in the question, and the means from the plot are calculated thus;
Students; no. of siblings
student 0 2
student 1 4
student 2 7
student 3 5
student 4 2
Total 20
Mean no. of siblings = (total number of siblings) ÷ (total number of students)
Note that number of students here are the once that had at least one sibling, others without siblings are not used in the calculation, hence 5 students (student-0 to student-4) make up total number of students, while the remaining 4 students (student-4 to student-9) are disregarded.
Therefore, mean = 20 ÷ 5 = 4 siblings.
Um where the problem or number?