Answer:
2000
Step-by-step explanation:
Given the equation :
S=2000n+55000
Comparing the equation given to the standard linear equation formula :
y = mx + c
Where ; c = intercept ; m = slope ; y = dependent variable and x = independent variable
From The comparison, the slope of the equation given = 2000.
According to the context, the slope means that Camden salary will increase by 2000 each year.
Answer:
16
Step-by-step explanation:
b^2
Let b= -4
(-4)^2
16
r
sin
θ
=
−
3
Explanation:
Imagine we have a point
P
with Rectangular (also called Cartesian) coordinates
(
x
,
y
)
and Polar coordinates
(
r
,
θ
)
.
The following diagram will help us visualise the situation better:
https://keisan.casio.com/exec/system/1223526375
https://keisan.casio.com/exec/system/1223526375
We can see that a right triangle is formed with sides
x
,
y
and
r
, as well as an angle
θ
.
We have to find the relation between the Cartesian and Polar coordinates, respectively.
By Pythagora's theorem, we get the result
r
2
=
x
2
+
y
2
The only properties we can say about
θ
are its trigonometric functions:
sin
θ
=
y
/
r
⇒
y
=
r
sin
θ
cos
θ
=
x
/
r
⇒
x
=
r
cos
θ
So we have the following relations:
⎧
⎪
⎨
⎪
⎩
r
2
=
x
2
+
y
2
y
=
r
sin
θ
x
=
r
cos
θ
Now, we can see that saying
y
=
−
3
in the Rectangular system is equivalent to say
r
sin
θ
=
−
3
Answer link
Jim G.
May 19, 2018
r
=
−
3
sin
θ
Explanation:
to convert from
cartesian to polar
∙
x
x
=
r
cos
θ
and
y
=
r
sin
θ
⇒
r
sin
θ
=
−
3
⇒
r
=
−
3
sin
θ
Answer: Check explanation.
Step-by-step explanation: I think its 0. Not sure. Hope this helped!
The <em>rigid</em> transformations used for each figure:
- Figure 5 - Reflection around x and y axes: (x, y) → (- x, - y)
- Figure 6 - Horizontal and vertical translations: (x, y) → (x + 1, y - 2)
<h3>What transformation rules do create the resulting images?</h3>
In this question we must determine what kind of <em>rigid</em> transformations generates each image. <em>Rigid</em> transformations are transformations applied on geometric loci such that <em>Euclidean</em> distance is conserved. Now we proceed to determine the transformation rule for each case:
Figure 5 - Reflection around the x-axis followed by reflection around the y-axis.
(x, y) → (- x, - y)
Figure 6 - Translation one unit in the +x direction and two units in the -y direction.
(x, y) → (x + 1, y - 2)
To learn more on transformation rules: brainly.com/question/9201867
#SPJ1